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INTRODUCTION

There has been significant interest in the excitation
of ultrasonic oscillations using magnetostriction
transducers [1–8]. Known applications (hydroacous�
tics, defectoscopy, and ultrasonic technologies) are sup�
plemented with the applications of such transducers in
the microwave acousto�electronics (f = 109–1011 Hz) in
which relatively high mechanical Q factors of ferrite
resonators (up to 107 for yttrium–iron garnet (YIG))
make it possible to construct high�efficiency devices
for data processing [9, 10]. The most important prob�
lem involves the construction of a sufficiently efficient
hypersonic emitter, which is impeded by the nonlinear
parametric excitation of exchange spin waves that
leads to significant loss even at an excitation level of
1 mW [11–13].

The results of [14–18] show that the parametric
decay can be prevented using an appropriate configu�
ration of the transducer. In the optimal configuration,
a normally magnetized thin plate exhibits the lower
frequency of ferromagnetic resonance (FMR) that
coincides with the bottom of the spectrum of exchange
spin waves. The absence of the parametric decay in
such a configuration makes it possible to experimen�
tally obtain precession angels of no less than 10°–20°
for the magnetization vector [16–18] and provides
additional possibilities in the excitation of high�power
hypersound.

The theoretical analysis of the excitation of hyper�
sound with the aid of a magnetoacoustic transducer

based on a normally magnetized ferrite disk in the lin�
ear regime can be found in [9, 10, 19]. A nonlinear
regime allows an increase in the excitation level of
ultrasound by almost two orders of magnitude [20].
However, a cumbersome mathematical procedure
leads to a significant increase in the computation time.

The above circumstances and practical demands
necessitate the development of a simpler mathemati�
cal procedure that makes it possible to adequately
solve the same problems with an accuracy that is suffi�
cient for practical applications.

Such a procedure for the calculation of the excita�
tion of hypersound using a magnetostriction trans�
ducer has been constructed in [21, 22] using a model
of coupled oscillators in the linear [21] and quadratic
[22] approximations. However, several examples have
been considered under strict resonance conditions
with disregard of the significantly nonlinear excitation
that leads to self�modulation effects.

In this work, we develop the above model of the
coupled oscillators based on the quadratic approxima�
tion to provide additional possibilities in the applica�
tion in a wider frequency interval in the presence of a
higher nonlinearity.

The work consists of two parts. In the first part, we
derive and briefly analyze a system of coupled equa�
tions in the quadratic approximation with a linear
approximation as a particular scenario. In the second
part, the proposed procedure is used in the study of
several nonlinear problems of the excitation of hyper�
sound with the aid of a magnetostriction transducer.
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1. CONFIGURATION OF THE PROBLEM 
AND BASIC EQUATIONS

Figure 1 demonstrates the configuration of the
problem that coincides with the configuration of
[20–22]. The system is based on a plane�parallel plate
with thickness d that exhibits magnetic, elastic, and
magnetoelastic properties. The material of the plate
has cubic crystallographic symmetry, and the (100)
plane coincides with the plate plane.

External magnetic field  is exerted perpendicu�

larly to the plate plane, and ac magnetic field  is ori�
ented along the plate plane. The problem is solved in
the Cartesian coordinates Oxyz, the Oxy plane of
which coincides with the plate plane and the Ox , Oy,
and Oz axes are parallel to the edges of the cubic crys�
tallographic cell. Origin of coordinates O is located at
the center of the plate, so that the plate planes have
coordinates 

The basic system of the equations of motion for
normalized components of magnetization mx,y,z is
written as [20]

(1)

where γ is the gyromagnetic constant and α is the Hil�
bert decay parameter. The equations for my, z are
derived using cyclic change of variables x, y, and z.

Effective fields Hx, y, z in these equations are given by

(2)

(3)

(4)

where H0 is the external static field, hx,y are the com�
ponents of the external ac field, M0 is the saturation
magnetization of the plate material, and the expres�
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Note that components Hay and Haz are obtained using
expression (5) with the aid of the cyclic change of vari�
ables x, y, and z. Here,  are the constants of the
uniaxial cubic anisotropy,  are the constants of the
magnetoelastic interaction, and ux,y,z are the compo�
nents of the elastic displacement.

The equations for components of elastic displace�
ment ux, y are represented as [20]

(6)

and the boundary conditions are written as

(7)

where β is the decay parameter, с44 is the elastic con�
stant, and ρ is the density of the plate material.

Thus, we consider three first�order equations for
the magnetization components and two second�order
equations for the elastic�displacement components,
which are equivalent to a system of seven first�order
equations. The analysis of oscillations in such a system
using the method of phase space [23–25] necessitates
the determination of coordinates of singularities
which is reduced to a solution of a seventh�order linear
algebraic equation. The complexity of such a problem
stimulates a search for simplifications. Below, we
present several examples.

2. BASIC ASSUMPTIONS 
AND SHORTENED EFFECTIVE FIELDS

Using the approach of [21, 22], we use the simpli�
fying assumptions in accordance with which the
anisotropy is absent (K0 = 0, K1 = 0, and H2 = 0), lon�
gitudinal elastic waves are absent (B1 = 0), elastic dis�
placements along the Oy axis are absent (uy = 0), and
elastic waves propagate only along the Oz axis
(  and ). 
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Fig. 1. Configuration of the system under study. The inset
shows the scheme of crystallographic cell.
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Then, effective fields (2)–(4) are represented as

(9)

(10)

(11)

3. QUADRATIC APPROXIMATION

The condition for constancy of the length of mag�
netization vector leads to relationships [26, 27]

(12)

We assume that  and expand quantity mz in a
Taylor series in the vicinity of unity up to quadratic
terms with respect to quantities mx and my:

(13)

4. EFFECTIVE FIELDS 
IN THE QUADRATIC APPROXIMATION

Substituting expression (13) in formulas (9)–(11)
with allowance for the quadratic terms with respect to
magnetization, we obtain the following effective fields:

(14)

(15)

(16)

These expressions contain coordinate derivative of
the elastic displacement  In accordance with
formula (62) of [20], this quantity is represented as

(17)

where vx is the function that satisfies the following
equation (formula (53) of [20]):

(18)

Function vx is the solution to the boundary�value
problem that is reduced to the first elastic mode [20].
Thus, we call it reduced function of elastic displace�
ment or reduced elastic displacement. The x compo�
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nent of the elastic displacement is written as (for�
mula (51) of [19])

(19)

At the plate surfaces at z = ±d/2, this quantity is

(20)

With allowance for quadratic approximation (13),
derivative (17) is written as

(21)

Using notation

(22)
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(24)

and substituting expression (21) in formulas (14)–
(16), we obtain the following effective fields:
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We differentiate expression (28) with respect to time
and substitute quantity  using expression (29)
to obtain

(30)

Several terms of this equation for magnetization
component mx contain component my. Thus, we must
simultaneously analyze the equation for my. The equa�
tions for quantities mx and my become independent in
the approximation of circular precession.

6. APPROXIMATION 
OF CIRCULAR PRECESSION

We consider right�hand circular precession of the
magnetization at frequency ω:

(31)

(32)

Thus, the following condition is satisfied:

(33)

For the forced oscillations, precession frequency ω coin�
cides with the external�force frequency. For free oscilla�
tions with relatively small amplitudes in the absence of
magnetoelasticity, the frequency is given by [26, 27] 

(34)

7. EQUATION FOR MAGNETIZATION 
IN THE QUADRATIC APPROXIMATION 

FOR FORCED OSCILLATIONS

We consider forced oscillations of magnetization
with frequency ω in the presence of external field

(35)

Substituting expression (35) in expression (30) and
collecting similar terms, we obtain
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This equation is the second�order equation in terms of
magnetization component mx, and a similar indepen�
dent equation can be obtained for component my using
substitution of subscripts y for subscripts x.

8. EQUATION FOR ELASTIC DISPLACEMENT 
IN THE QUADRATIC APPROXIMATION

We consider Eq. (18) for reduced elastic displace�
ment vx. Substitution of derivatives (28) and (29) leads
to cumbersome expressions. However, a test numerical
calculation using Eqs. (1)–(7) that is similar to the
calculation of [20] shows that the right�hand side of
Eq. (18) is less than the left�hand side by more than an
order of magnitude. Therefore, we can use mz = 1
instead of expression (13). With allowance for the
notation
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Eq. (18) is represented as
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Equations (36) and (40) form the desired system of
equations for magnetization and the reduced elastic
displacement in the quadratic approximation. In this
case, the total elastic displacements on the plate sur�
faces are given by formula (20).

9. EQUATIONS OF MOTION 
IN THE LINEAR APPROXIMATION

For comparison, we present the same system in the
linear approximation. The equation for magnetization
is written as

(41)

and the equation for the reduced elastic displacement
is represented as

(42)

Up to notation, such a system coincides with the
system of [21] (Eqs. 19 and 24).

For convenience, the system of equations (41) and
(42) is called the linearized system and the system of
equations (36) and (40) is called the squared system.

10. EQUATION FOR FREE OSCILLATIONS 
AT A RELATIVELY SMALL AMPLITUDE

For small�amplitude free oscillations (i.e., with
disregard of the nonlinear mismatch), we can use
expression (34) for frequency and substitute it in
Eqs. (36) and (40). Thus, we derive the equation for
magnetization
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and the equation for the elastic displacement
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These equations coincide with the equations of [22] up
to the notation.

11. GENERAL SYSTEM OF EQUATIONS 
FOR FORCED OSCILLATIONS 

OF TWO COUPLED OSCILLATORS 
IN THE QUADRATIC APPROXIMATION

The squared system of equations (36) and (40) is a
particular case of a more general symmetric system of
two second�order nonlinear differential equations in
terms of variables x1 and x2 that correspond to nonlin�
ear forced oscillations of a system of two coupled
oscillators with two degrees of freedom:

(45)

 (46)

These equations are transformed into each other
using interchange of subscripts 1 and 2. A more gen�
eral representation of such a coupled system must
contain the terms that consist of products of three
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tions in a ferrite plate and are not taken into account
in the analysis.

The linearized system of Eqs. (41) and (42) is a par�
ticular case of such a system.

We represent coefficients of the system of equa�
tions (45) and (46) in terms of material parameters,
geometrical parameters of the magnetic plate, and
external field:

(47)
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In these expressions, we use the following notation
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12. ANALYSIS 
OF THE STRUCTURE OF THE SYSTEM 

FOR COUPLED OSCILLATORS

We consider the structure of the system of Eqs. (45)
and (46) that contains a relatively large number of
terms. To estimate the contribution of these terms to
formation of oscillations of the magnetization and elas�
tic displacement, we estimate relative values of terms for
a typical scenario of the excitation of ultrasonic oscilla�
tions. We use the material parameters of YIG from [9,

26, 27]:  G;  erg cm–3;

 erg cm–3;  g cm–3; decay
parameters, α = 0.02 and β = 109 s–1, film thickness,
d = 6.865 × 10–5 cm; field, H0 = 2750 Oe; and fre�
quency, f = 2800 MHz (ω = 1.7592 × 1010 s–1). The fre�
quency and field correspond to the excitation of the
ferromagnetic and elastic resonances. Additional
parameters given by expressions (81)–(86) are as fol�

r24 2γ2Hpb0c2;=

s21 0;=

s22 0;=

s23 –
2γb2c2

ω2
������������� γ Hp 3b0–( ) ω–[ ];=

s24 0;=

s25
2γb2c2

ω
�������������;=

s26
2γb0c2

ω2
������������� 2γHP ω–( );=

A21 γ2HPc2h0;=

A22 0.=

Hp H0 4πM0;–=

b0 2πM0;=

b1
B2

2

M0c44

�����������;=

b2
B2

M0d
��������;=

c1
c44π

2

ρd2
���������;=

c2
4B2d

c44π
2

����������.=

04 1750Mπ =
6

2 6.96 10B = ×

c 11
44 7.64 10= × .175ρ =



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 60  No. 1  2015

APPLICATION OF THE MODEL OF COUPLED OSCILLATORS 81

lows:  Oe, b0 = 875 G, b1 = 0.4553 Oe, b2 =
7.2802 × 108 Oe cm–1, c1 = 3.0947 × 1020 s–1, and c2 =
2.5346 × 10–10 cm. 

The terms in Eqs. (45) and (46) represent products
of coefficients  bik and cik, variables m and v raised
to different powers, and frequency ω and squared fre�
quency (that result from time differentiation of func�
tion 

Table 1 presents the absolute values of the terms of
Eqs. (45) and (46) for two external fields (the signs and
dimensions in the CGS system are omitted for sim�
plicity).

Using the solution to the closed problem
(Eqs. (1)–(7)), we obtain the following amplitudes of

variables: m = 2 × 10–4 (6 × 10–1) and 
(1 × 10–9) cm for the field h0 = 0.01 (400) Oe. 

We choose such fields due to the following reasons.

1000pH =

,ika

( ))exp .i tω

135 10−

= ×v

Field h0 = 0.01 Oe corresponds to the linear
regime, so that we obtain a reference point that can be
used to study the role of nonlinearity. 

Field h0 = 400 Oe corresponds to a strongly nonlin�
ear regime in which the quadratic approximation
yields an error of about 5% with respect to the magne�
tization and a factor of 2 with respect to the elastic dis�
placement [22].

Table 1 shows that the contribution of the terms
with coefficients rik and sik in the linear regime (h0 =
400 Oe) is less than the contribution of the terms with
coefficients pik and qik by more than seven orders of
magnitude. Thus, the former contributions can be
neglected. The coupling is provided by the terms that
are proportional to the first power of variables (i.e., q11

and q21), whereas the terms that are proportional to the
derivatives of variables with coefficients q12 and q22

provide the contribution that is less than the contribu�

Table 1. Terms of the system of equations (45)  and (46) at B2 = 6.96 × 106 erg cm–3

First oscillator Second oscillator

terms terms

6.19 × 1016 1.86 × 1020 1.55 × 108 3.09 × 1011

2.49  × 1015 7.46 × 1018 1.76 × 107 3.52 × 1010

6.23 × 1016 1.87 × 1020 1.55 × 108 3.09 × 1011

2.27 × 1014 4.54 × 1017 1.58 × 107 4.73 × 1010

4.52 × 1012 9.04 × 1015 1.47 × 106 4.40 × 109

4.36 × 109 1.18 × 1020 0.00 0.00

1.93 × 107 3.47 × 1017 8.37 × 10–6 1.00 × 105

3.30 × 104 3.96 × 1014 4.90 × 10–3 8.80 × 107

0.00 0.00 1.10 × 100 2.98 × 1010

4.38 × 109 1.18 × 1020 0.00 0.00

9.04 × 106 1.63 × 1017 0.00 0.00

0.00 0.00 6.00 × 10–3 1.08 × 108

2.28 × 107 4.28 × 1017 0.00 0.00

0.00 0.00 2.30 × 10–3 4.12 × 107

0.00 0.00 1.11 × 100 3.00 × 1010

3.11 × 1015 1.25 × 1020 7.90 × 105 3.16 × 1010

0.00 0.00 0.00 0.00

h0 0.01= h0 400= h0 0.01= h0 400=

11
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tion of decay parameters  and  by one�to�three
orders of magnitude.

In the strongly nonlinear regime (h0 = 400 Oe), the
contribution of the nonlinear terms with coefficients

 and r24 significantly increases. Such an increase
corresponds to the role of nonlinearity of the magnetic
oscillator related to the magnetization nonlinearity.
The contribution of the coupling provided by the lin�
ear terms with coefficients qik slightly increases and
becomes greater by an order of magnitude. Note sig�
nificant contributions of the nonlinear terms with
derivatives, in particular, with coefficient  for the
magnetic oscillator and coefficient  for the elastic
oscillator. In both cases, the nonlinearity is provided
by the nonlinearity of the magnetic oscillator. The
nonlinear coupling via derivatives is noticeably
enhanced owing to the terms with coefficients  and

 for the magnetic oscillator and  and  for the
elastic oscillator. In both cases, the nonlinearity is pro�
vided by the squared amplitude of the magnetic oscil�
lator.

Thus, the contribution of the terms with derivatives
increases in the strongly nonlinear regime owing to the
magnetic oscillator. The terms that are proportional to
the amplitude of the magnetization oscillations in the
second and third powers must be taken into account in
the equations.

Constant of magnetoelastic interaction  must be
relatively large for the efficient excitation of the hyper�
sonic oscillations. For example, the constant of the
terbium–iron garnet is greater than the YIG constant
by a factor of about 5 [9]. The results of [28] show
additional nonlinear effects, for example, significant
variations in the field of the orientational transition of
magnetization and spontaneous reorientation of the
magnetization vector at constant  that is higher than
the critical level.

In this regard, it is expedient to analyze the terms of
Eqs. (45) and (46) at relatively large values of the con�
stant. Table 2 presents the results for 
(YIG). The results are obtained for the parameters of
Table 1 except for constant B2. Additional parameters
(81)–(86) are as follows: Hp = 1000 Oe, b0 = 875 G,
b1 = 182.12 Oe, b2 = 1.4560 × 1010 Oe cm–1, c1 =
3.0947 × 1020 s–1, and c2 = 5.0692 × 10–9 cm.

The comparison of the results of Tables 1 and 2
shows an increase in the contribution of the linear
terms determined by coefficients qik at a relatively large
constant B2 even in the linear regime (h0 = 0.01 Oe).
The linear terms become comparable with the terms
determined by coefficients pik (the terms with coeffi�
cient q11 are even greater than the main terms).

The contribution of the terms with derivatives sig�
nificantly increases in the nonlinear regime. For the
magnetic oscillator such an increase takes place for all
terms with coefficients rik and  Such terms are less

12p 22p

11r

11s

26s

12s

14s 23s 25s

2B

2B

2 220B B= ×

.iks

than the main terms with coefficients pik and  by
only an order of magnitude, and the term that is
responsible for the decay with coefficient p12 is even
greater. For the elastic oscillator, the main contribu�
tion is provided by the terms with coefficients  and
s23 that are proportional to the squared amplitude of
the magnetic oscillations.

Thus, the contribution of the coupling constants is
significant at a relatively large constant of the magne�
toelastic interaction even in the linear regime and the
contribution additionally increases in the nonlinear
regime. In the strongly nonlinear regime of the mag�
netic oscillator, significant contributions are provided
by all terms with derivatives. For the elastic terms, rel�
atively large contributions are provided by terms that
are proportional to the squared amplitude of the mag�
netization oscillations.

13. SHORTENED EQUATIONS THAT CONTAIN 
THE MAIN TERMS

Equations (45) and (46) can be simplified using the
results of Tables 1 and 2 that make it possible to choose
the most significant terms. We separately represent the
shortened equations for small and large constants B2.

For small constant , we obtain the equations for
the first oscillator

(87)

and the second oscillator

(88)

For large constant , we derive the equations for the
first oscillator

(89)

and the second oscillator

(90)
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In both cases, the system of equations is not totally
symmetric due to different natures of the magnetic
and elastic oscillation systems under study. Note that
the remaining linear terms contain variables and
derivatives of variables and the remaining nonlinear
terms contain the variables in the third power and the
products of variables and squared derivatives (i.e.,
cubic terms).

14. VERIFICATION OF THE CORRECTNESS 
OF THE QUADRATIC APPROXIMATION

We consider the closeness of the results provided by
the squared system of equations (45) and (46) to the
results of the original nonlinear system (1)–(7). We
also consider the approximation that is provided by the
linearized system of equations (41) and (42).

Figure 2 shows the dependences of the transverse
component of magnetization (a) and elastic displace�

ment (b) on the ac�field amplitude for the YIG param�
eters from [21]. Displacement u is obtained from vari�
able  using formula (20) at 

It is seen that both (squared and linearized) systems
slightly overestimate the magnetization and displace�
ment amplitudes and the overestimation is greater for
the displacement. The approximation provided by the
squared system is significantly better than the approx�
imation of the linearized system.

In particular, the linearized system of equations (41)
and (42) describes the dependences up to ac�field
amplitude of 5 Oe ( ) with an accuracy of
about 10%. When the amplitude is less than 10 Oe
( ), the accuracy is about 30%. Then, the
approximation becomes inaccurate.

The squared system of equations (45) and (46)
describes the amplitude of magnetic oscillations with an
accuracy of about 3% when the ac�field amplitude is less

v 2.z d=

0 0 0.04h M =

0 0 0.07h M =

Table 2. Terms of the system of equations (45) and (46) at B2 = 20 B2 (YIG)

First oscillator Second oscillator

terms terms0 0.01h = 0 400h = 0 0.01h = 0 400h =

11
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than 100 Oe ( ). The accuracy is about 5%
if the field amplitude is less than 400 Oe .
The same system describes the amplitude of elastic oscil�
lations with an accuracy of 20% when the ac�field ampli�
tude is less than 60 Oe . For amplitudes
of less than 100 and 400 Oe, the accuracies are 25 and
100%, respectively.

For an accuracy of 20% in the analysis of elastic
oscillations, the squared system makes it possible to
consider amplitudes of ac field of up to 0.40 of the sat�
uration magnetization, so that that the corresponding
precession angles are no greater than 25°. For the lin�
earized system, the same parameters are 0.05 and 3°,
respectively. In the study of the magnetic oscillations,
the squared system can be used when the fields are
greater than the saturation magnetization by a factor of
no less than 3 and the precession angle is up to 30°–40°.
We assume that such precession angles allow the appli�
cation of the squared system in the analysis of nonlin�
ear processes with a relatively high accuracy.

15. CORRECTNESS OF THE APPROXIMATION 
AT A RELATIVELY LARGE CONSTANT 
OF MAGNETOELASTIC INTERACTION

Constant of magnetoelastic interaction B2 that is
slightly greater than the YIG constant is important
under certain conditions for the excitation of elastic
oscillations (e.g., for reorientation of the magnetiza�

0 0 0.71h M =

( )0 0 2.86h M =

( )0 0 0.43h M =

tion vector [28]). Therefore, it is of interest to consider
the accuracies provided by the linear and quadratic
approximations.

Figure 3 presents the dependences of the oscilla�
tion amplitudes of magnetization (a) and elastic dis�
placement (b) on constant ratio  (YIG) for
different excitation levels (including the level that cor�
responds to the strongly nonlinear regime).

Figure 3a shows that the accuracies of both approx�
imation are about 20% for the magnetization oscilla�
tions at a relatively low excitation level (group of
curves 1 corresponding to h0 = 10 Oe) and . The
accuracy is about 1% when ratio N increases to 10, and
an additional increase in ratio N leads to better accu�
racies.

At the intermediate excitation level (group of
curves 2 corresponding to h0 = 100 Oe), an order�of�
magnitude deviation is obtained for the linear approx�
imation at  whereas the error for the quadratic
approximation is no greater than 10%. The errors for
both approximations decrease with an increase in
ratio N, so that an increase in ratio from 1 to 20 leads
to a decrease in the error from 10 to 1%.

At the high excitation level (group of curves 3 cor�
responding to h0 = 400 Oe), the error of the linear
approximation at relatively small N is greater than one
and a half order of magnitude whereas the error for the
quadratic approximation is no greater than 20%.
When ratio N increases to 20, the errors of both
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Fig. 2. Plots of (a) transverse component of magnetization and (b) elastic displacement vs. ac�field amplitude: (1) solution to
closed system of equations (1)–(7), (2) solution to linearized system of equations (41) and (42), (3) solution to squared system of

equations (45) and (46) for the material parameters of YIG (  G, B2 = 6.96 × 106 erg cm–3,  erg cm–3,

ρ = 5.17 g cm–3, α = 0.02, and β = 109 s–1),  cm, H0 = 2750 Oe, and an excitation frequency of 2.8 GHz. The
insets show the same curves at ac field of up to 400 Oe.
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approximations decrease to about 20%. The errors
remain unchanged if ratio N additionally increases.

For the elastic displacement (Fig. 3b), the greatest
deviations of the approximate solution are observed at
relatively small ratios N ~ 2–3. The deviations
increase with an increase in the excitation level, so that
the errors are about 20% for both approximations at
h0 = 10 Oe (curves 1). For h0 = 400 Oe (curves 3), the
error for the linear approximation is about an order of
magnitude and the error for the quadratic approxima�
tion is no greater than 30%.

When ratio N increases to 20, the errors of both
approximations decrease to 10% at h0 = 10 Oe. The
errors are no greater than 30% at h0 = 400 Oe. A fur�
ther increase in ratio N leads to an increase in the
errors: the errors are 30% at N = 40 and h0 = 10 Oe,
and the errors for the linear and quadratic approxima�
tions are 80 and 30%, respectively, at h0 = 400 Oe.

We conclude that the accuracies of both linear and
quadratic approximations for the oscillations of mag�
netization increase with an increase in constant of
magnetoelastic interaction B2 even at relatively high
nonlinearities. When constant B2 increases, the accu�
racy for elastic oscillations, first, increases, reaches
maximum, and, then, decreases. The maximum accu�
racy corresponds to constant B2 that is greater than the
constant for YIG by an order of magnitude.

CONCLUSIONS

The following results are obtained in the first part of
the work.

The excitation of hypersonic oscillations by ac
magnetic field in a plane�parallel normally magne�
tized ferrite plate is considered in the framework of the
problem of the magnetostriction microwave trans�
ducer working at the frequency of the ferromagnetic
resonance. The equations of motion of the magnetiza�
tion and elastic�displacement vectors are derived with
allowance for initial conditions and excitation by ac
magnetic field.

To simplify the problem, we consider the quadratic
approximation with respect to magnetization with
allowance for the circular precession. Thus, the closed
system of equations that contains seven first�order
equations and four boundary conditions is reduced to
a squared system of four first�order equations without
boundary conditions. The linearized system that has
been derived in previous works is a particular case of
the squared system.

We introduce equivalent parameters of the squared
system that are represented in terms of material
parameters and geometrical parameters of the original
ferrite plate. A generalized symmetric representation
is obtained for the system of equations in the quadratic
approximation. The system of equations corresponds
to a model system of two coupled oscillators in which
the nonlinearity is described using the third�order
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Fig. 3. Plots of oscillation amplitudes of (a) magnetization and (b) elastic displacement vs. ratio of constants of magnetoelastic
interaction  (YIG) for excitation fields h0 = (1) 10, (2) 100, and (3) 400 Oe: (solid lines) solution to closed system of
equations (1)–(7), (dotted line) linear approximation using equations (41) and (42), and (dashed line) quadratic approximation
using equations (45) and (46).
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terms with respect to magnetization, elastic displace�
ment, and their derivatives.

Shortened equations that contain only significant
terms responsible for the dynamics of the system are
derived using the numerical analysis of the relative
contributions of equivalent parameters for YIG. It is
demonstrated that the main contribution is provided
by the terms proportional to the magnetization in the
third power and the product of magnetization and its
squared time derivative.

The analysis of the time evolution of oscillations
makes it possible to compare the approximations pro�
vided by the linearized and squared systems and the
solution to the original nonlinear system. In the study
of elastic oscillations with an accuracy of 20%, the lin�
earized system is correct at ac fields of no greater than
0.05 of the saturation magnetization at precession
angles of about 3°. The squared system remains cor�
rect up to fields of 0.40 of the saturation magnetization
corresponding to precession angles of up to 25°. With
respect to magnetic oscillations, the squared system
exhibits an accuracy of 5% for the fields that are
greater than the saturation magnetization by a factor
of more than 3 (the corresponding precession angles
are up to 40°).

We consider the accuracy of calculations using the
linearized and squared systems at relatively high con�
stants of magnetoelastic interaction. For the oscilla�
tions of magnetization, an increase in the ratio of the
constant of magnetoelastic interaction to the YIG
constant to 40 leads to the accuracies of the linear and
quadratic approximations that are no worse than 5%
when the field is no greater than 0.40 of the saturation
magnetization. For the elastic oscillations, the accu�
racy is 40% for the constant than is greater than the
YIG constant by an order of magnitude. Then, the
maximum accuracy (10%) is reached, and a further
increase in the constant to a constant ratio of 40 leads
to a decrease in the accuracy to a level of 80%.
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